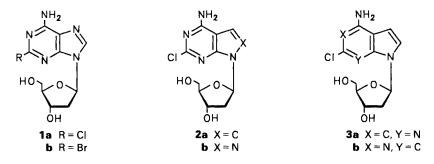
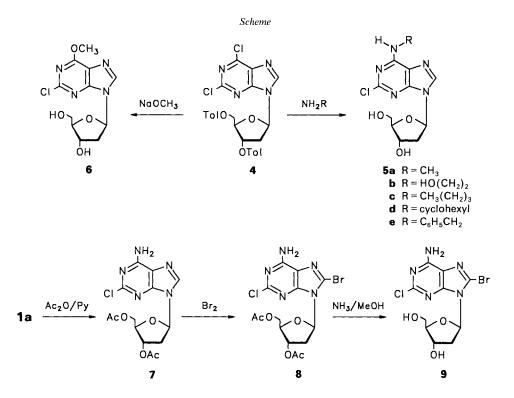
172. Base-Modified Nucleosides Related to 2-Chloro-2'-deoxyadenosine


by Zygmunt Kazimierczuk^a), Juhani A. Vilpo^b), and Frank Seela^c)*

 ^a) Department of Biophysics, University of Warsaw, Zwirki i Wigury 93, PL-02089 Warsaw
 ^b) Department of Clinical Chemistry, University of Tampere, SF-33520 Tampere
 ^c) Laboratorium f
ür Organische und Bioorganische Chemie, Institut f
ür Chemie, Universit
ät Osnabr
ück, Barbarastr. 7, D-4500 Osnabr
ück

(27.VII.92)


Derivatives of 2-chloro-2'-deoxyadenosine (1a) containing secondary 6-NH₂ groups (5a–c) or a 8-Br substituent (9) were synthesized. They were tested together with ring-modified congeners containing a pyrrolo[2,3*b*]pyridine, pyrrolo[3,2-*c*]pyridine, or pyrazolo[3,4-*d*]pyrimidine ring system as inhibitors of various leukemic cell lines. Only the 8-Br derivatives 9 showed inhibitory activity, whereas the base-modified congeners were not active. Compound 1a was protonated at a $pK_a = 1.4$ (2'-deoxyadenosine at $pK_a = 3.8$). Protonation occurred at N(7) and not at N(1) as observed for dA.

Introduction. – The naturally occurring 2'-deoxyadenosine is toxic to certain lymphoid cells, if adenosine deaminase is absent or inhibited [1]. The adenosine deaminases resistant 2-chloro- and 2-bromo-2'-deoxyadenosines, 1a and 1b, respectively, are much more cytotoxic to T-lymphoblastic, B-lymphoblastic, myeloblastic, and melanoma cells then dA [2–6]. A potent activity of 1a against human monocytes was observed as well [7]. Currently, compound 1a is used for the treatment of several chronic lymphoid malignances as hairy cell leukemia, cutaneous T-cell lymphoma, and acute leukemia [8] [9].

Compounds 1a and 1b have been prepared by enzymatic and chemical methods. Enzymatic synthesis was achieved by transfer of the deoxyribose moiety from thymidine to 2-haloadenines catalyzed by transdeoxyribosylase [2] [3]. The chemical synthesis of 1 was realized at first by the fusion method, and it was shown that the 2'-deoxyribonucleoside 1a was two magnitudes more active against leukemia L-1210 cell as the ribonucleoside [10]. Compounds 1a and 1b were obtained stereospecifically using the sodium salts of 2,6-dihalogenopurines and a 2'-deoxy-sugar chloride, followed by ammonolysis [11] [12]. We have extended this work to compounds such as **2a**, **b** and **3a**, **b** containing a pyrrolo[2,3-*b*]pyridine, pyrrolo[3,4-*c*]pyridine, pyrrolo[3,4-*d*]pyrimidine, and pyrazolo-[3,4-d]pyrimidine ring system instead of the purine moiety [13–15]. Now, derivatives of **1a** with alkyl or aryl residues at the 6-amino group or Br substituents at C(8) will be described, and the activity of base-modified compounds against leukemic cell lines will be studied.

Results and Discussion. – As synthetic intermediate, the dichloro nucleoside **4** was chosen [11]. The 6-Cl substituent was displaced by various amino groups (*Scheme*, **5a**–c).

In the case of the reaction with sterically hindered amines **5e** and **5d**, MeONa/MeOH was added to complete the removal of the *p*-toluoyl protecting groups. Compound **4** was also converted into **6** by the action of MeONa. For introduction of an 8-Br substituent, compound **1a** was protected selectively at C(3')-OH and C(5')-OH yielding **7**. The bromination of **7** was then carried out in the mixture of dioxane/AcONa buffer with Br₂ to afford **8**. Treatment of **7** with *N*-bromosuccinimide or *N*-bromoacetamide gave low yields. Compound **8** was deacylated with NH₃ affording crystalline **9**.

Nucleosides were characterized by elemental analyses, ¹H- and ¹³C-NMR spectra (*Table 1*). The ¹³C-NMR chemical shifts were assigned from gated-decoupled spectra (*Table 2*). However, assignment of C(2) vs. C(6) was difficult in the case of the amino

HELVETICA CHIMICA AC	TA – Vol. 75 (1992)
----------------------	---------------------

Compound	C(2)	C(4)	C(5)	C(6)	C(8)	CH ₃ /CH ₂
1a [14]	153.0	150.0	118.1	156.8	139.8	_
1b [14]	144.1	149.9	118.5	156.6	139.6	
5a	153.2	148.9	118.6	155.5	139.5	27.1
5b	153.2	149.3	118.7	155.3	139.7	59.4/45.2
5c	153.3	149.2	118.6	155.2	139.5	13.7/19.6
5d	153.2	149.3	118.4	154.2	139.4	
5e	153.2	149.5	118.7	155.0	139.2	43.2
6	151.4	152.6	120.3	160.8	142.7	54.9
7	153.2	150.2	118.2	156.9	139.9	
8	153.0	150.7	118.4	155.6	126.7	
9	153.0	150.9	118.9	155.9	127.0	
· · · · · ·	C(1')	C(2')	C(3')	C(4′)	C(5')	
1a	83.5	DMSO	70.7	88.2	63.3	
1b	83.5	DMSO	71.1	88.1	62.0	
5a	83.5	DMSO	70.7	89.1	61.6	
5b	83.7	DMSO	70.8	88.0	61.7	
5c	83.7	DMSO	70.8	88.0	61.7	
5d	83.6	DMSO	70.7	88.0	61.6	
5e	83.7	DMSO	70.7	88.0	61.6	
6	83.8	DMSO	70.5	88.0	61.4	54.9
7	83.4	35.4	74.2	81.7	63.5	
8	85.4	33.7	73.7	81.6	63.1	
9	86.2	36.7	71.1	88.4	62.1	

Table 1. ¹³C-NMR Chemical Shifts of Purine 2'-Deoxyribonucleosides in $(D_6)DMSO$ at 23°

Table 2. J(C,H) Values [Hz] of Purine 2'-Deoxyribonucleosides ^a)

	1 a	1b	6	9
$\overline{J(C(4),H-C(1'))}$	m	m	m	5.0
J(C(5),H-C(8))	11.3	11.1	12.5	_
$J(C(5), NH_2 - C(6))$	3.8	4.4	-	-
$J(C(6), CH_3O - C(6))$		-	3.8	
J(C(8),H-C(8))	214	214	216	-
J(C(8),H-C(1'))	3.8	4.0	3.8	3.8
J(C(1'),H-C(1'))	166	166	168	165
J(C(3'),H-C(3'))	150	149	149	150
J(C(4'),H-C(4'))	147	147	149	149
J(C(5'),H-C(5'))	140	140	140	138

Table 3. NOE Data [%] of Purine 2'-Deoxyribonucleosides upon Irradiation of $H-C(8)^a$)

	1a	dA [17]
 H-C(2') + H-C(3')	5.6	2.7
H-C(1')	4.7	6.0

compounds. On the other hand, the MeO derivative 6 gave a *quadruplet* for C(6) which made the assignments of this compound unambiguously. By using the increments of amino vs. MeO groups [16], the assignment of 1a and the derivatives 5a-e were established. To get information about the 'syn'/'anti'-ratio of the nucleobase around the N-glycosylic bond, NOE spectra were measured [17]. Table 3 summarizes the NOE value of H-C(1') and the sum of H-C(2') and H-C(3') upon irradiation of H-C(8). According to that, a 'syn'-population is favored in the case of 1a, similar to 2'-deoxyadenosine. As the 8-Br compound 9 shows almost identical coupling constants between C(8) and the anomeric proton as the compounds 1a or 1b 'syn'-orientiation is also most likely for this derivative.

Adenosine and 2'-deoxyadenosine are protonated at N(1) in H₂O [18] with a p $K_a = 3.8$ for deoxyadenosine [19]. We have determined the p K_a value of **1a** as 1.4. However, it was not clear whether N(1), as reported for 2'-deoxyadenosine, is still the first protonation site. Therefore, ¹⁵N-NMR spectra have been measured [20]. The first measurements were carried out in DMSO in the absence of acid. Five signals appeared which showed similar shifts as 2'-deoxyadenosine (*Table 4*). INEPT Spectra confirmed the assignment. The main differences between **1a** and the parent 2'-deoxyadenosine appeared at N(1) and at the exocyclic amino group. According to *Table 4*, the ribonucleoside showed almost identical ¹⁵N-NMR spectra as the 2'-deoxyribonucleoside apart from the *ca*. 4-ppm downfield shift of the ribonucleoside at N(9).

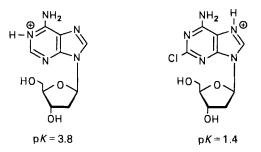


Table 4. ¹⁵N-NMR Chemical Shifts^a) and ¹⁵N,¹H Coupling Constants from Gated-Decoupled Spectra Measured in $(D_6)DMSO$ at 25°

	Measured in $(D_6)DMSO$ at 25°							
		N(1)	N(3)	N(7)	N(9)	NH ₂		
2'-Dec	oxyadenosine [20]	145.1	157.8	140.4	207.6	299.1		
Adenc	osine [20]	145.0	158.3	140.0	211.4	299.3		
1a		149.3	159.9	138.9	205.6	293.6		
2-Chloroadenosine 149.2		160.1	141.3	209.3	293.0			
Coupl	$\frac{\text{ing constants [Hz]}}{J(N(1),H-N(C(6)))}$	J(N(1),H-C(2))	J(N(3),H-C(2))	J(N(7),H-C(8))	J(N(9),H-C(8))	J(NH ₂)		
1a	<i>t</i> , 5	_		d, 10	d, 5	t, 91		
dA	-	d, 19	<i>d</i> , 15	<i>d</i> , 12	<i>d</i> , 10	t, 88		
^a) Rela	ative to MeNO ₂ .							

Stepwise addition of CF₃COOH to a DMSO solution of **1a** led to precipitation of the nucleobase. Apparently, traces of H_2O hydrolyzed the molecule at the *N*-glycosylic bond. This was circumvented using 2-chloroadenosine which is much more stable under these conditions. The *Figure* shows the result of CF₃COOH titration. Only, N(7) was shifted downfield, whereas small upfield shifts occurred for the amino group and N(9). The consumption of more than 1 equiv. of acid was surprising and may be the result of the basicity of DMSO. This experiment confirmed N(7) as protonation site. The same can be expected for the 2'-deoxynucleoside **1a**.

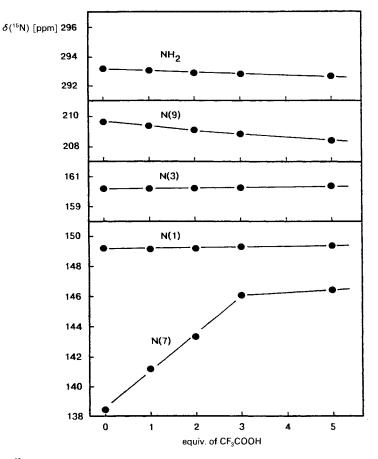


Figure. ¹⁵N-NMR Chemical shifts of 2'-chloroadenosine in (D₆)DMSO as a function of CF₃COOH concentration

It has been observed that **1a** as well as its ribonucleoside are much more resistant against adenosine deaminase than the parent 2'-deoxyadenosine. For the enzymatic deamination, a mechanism has been proposed requiring the addition of a H_2O molecule to the N(1)=C(6) bond of the adenine moiety as the first reaction step [22]. Enzymatic H_2O addition on **1a** may be more difficult as in the case of dA, as the bulky 2-Cl substituent may interfere during the binding at the active centre of the enzyme.

Compound **1a** is phosphorylated to the nucleoside monophosphate by deoxycytidine kinase and then further converted into the triphosphate [3] [4] [23]. Triphosphates are incorporated into DNA-developing strand breaks [24] [25]. The DNA damage is followed by accelerated consumption of NAD for poly(ADP-ribose) synthesis [26]. These effects provide a decline in ATP levels and cell death. Compound **1a** acts also as an inhibitor of ribonucleotide reductase, decreasing deoxynucleotides concentration within the cells [4].

Compound	ID_{50} Values [µg/ml]						
	MOLT-3	U-937	K-562	IM-9	PHA-ly		
1a	0.017	0.020	0.045	0.012	0.029		
2a	> 100	> 100	> 100	> 100	> 100		
2b	> 100	> 100	> 100	> 100	> 100		
3a [28]	> 100	> 100	> 100	> 100	> 100		
3b	> 100	> 100	> 100	> 100	> 100		
5a	-	-	-	-	18		
5b	> 100	27	> 100	> 100	> 100		
5c	> 10	3.1	> 10	> 10	> 10		
9	0.93	0.35	10	2.6	6.6		

Table 5. Inhibitory Activity of 2-Halopurine 2'-Deoxyribonucleosides and Congeners

^a) ID₅₀ is the concentration of compounds which caused a 50% decrease in L-[¹⁴C]leucine incorporation by the cells in the culture. MOLT-3: acute T cell leukemia; U-937: histiocytic lymphoma; K-562: chronic myelogenous leukemia; IM-9: human myeloma (ATCC No.: CCL 159); PHA-ly: phytohemagglutinin-stimulated peripheral blood lymphocytes.

Cytotoxicity studies on compounds indicated in *Table 5* allow a correlation of these properties with nucleoside structure. The replacement of the H-atom at the exocyclic amino group by bulky residues (**5a-c**) decreases the cytotoxic activity by a factor more than 100 against leukemia cell lines. On the other hand, substitution of H-C(8) by Br reduced the activity only by a factor of *ca.* 10. The 7-deazapurine analogues **2a**, **b** as well as the 1,7- or 3,7-dideazapurine derivatives **3a**, **b** are not active at concentrations lower than 100 µg/ml. Compound **1a** is not phosphorylated by deoxythymidine kinases (TK1 and TK2) but is phosphorylated by deoxycytidine kinase, as it occurs with a few other purine 2'-deoxyribonucleosides, arabinonucleosides, and 2'-fluoronucleosides [27] [28]. As phosphorylation is a crucial step required for cellular activity of these nucleosides, the low activity of the derivatives shown in *Table 5* implies that base-modified derivatives of **1a**, containing an altered nitrogen pattern or bulky substituents at the exocyclic amino group, are not substrates for this enzyme.

We thank Dr. H. Rosemeyer for the ¹⁵N-NMR spectra. Financial support is gratefully acknowledged by Polish Committee of Scientific Research (Z. K.) and the Deutsche Forschungsgemeinschaft (F. S.).

Experimental Part

General. See [14]. 2-Chloroadenosine was a commercial product of *Sigma* (St. Louis, USA). ¹⁵N-NMR Spectra were measured at a *Bruker AMX-500* spectrometer with MeNO₂ as standard.

Cytotoxicity Tests. Toxicity of the compounds was determined by their effects on protein synthesis (^{14}C -L-leucine incorporation). The cell lines were obtained from the American Type Culture Collection. Test compounds were added to triplicate cultures in 96-well microplates containing 2×10^4 cells per a 200-µl well (or 10^5 peripheral blood lymphocytes, stimulated with phytohemagglutinin). Cells were cultured in *RPMI 1640*, medium-containing fetal calf serum (10%), in humidified atmosphere containing 5% CO₂ at 37°. L-[¹⁴C]leucine (specific activity 1.3 mCi/mmol and 0.5 µCi/ml) was added to the culture for the final 24 h of the 4-d culture period. After incubation, the proteins were precipitated with 0.2N HClO₄ and collected on a glass fibre filters using a multiple cell harvester (*Wallac*, Finland). The radioactivity incorporated into proteins was measured in a scintillation counter (*LKB-Wallac*; 1410, Finland).

2-*Chloro-9-(2'-deoxy-β*-D-erythro-*pentofuranosyl)-6-(methylamino)-9*H-*purine* (**5a**). The suspension of **4** (1.08 g, 2 mmol) [11] in MeCN/MeOH (1:5, 30 ml) was stirred at r.t. for 2 d. The mixture was evaporated to dryness and the residue chromatographed on a silica-gel column (2 × 25 cm) with CH₂Cl₂/MeOH 9:1 to yield colorless needles from H₂O (430 mg, 72%). M.p. 163–165°. TLC (CH₂Cl₂/MeOH, 9:1): R_f 0.35. UV (H₂O): 270 (16800). ¹H-NMR ((D₆)DMSO): 2.30, 2.65 (2m, 2 H–C(2')); 2.92 (d, J = 4.1, CH₃N); 3.55 (m, 2 H–C(5')); 3.86 (m, H–C(4')); 4.39 (m, H–C(3')); 4.96 (t, J = 5.3, HO–C(5')); 5.32 (d, J = 4.0, HO–C(3')); 6.27 ('t', J = 6.8, H–C(1')); 8.26 (d, J = 4.2, NH); 8.35 (s, H–C(8)). Anal. calc. for C₁₁H₁₄ClN₅O₃ (299.7): C 44.08, H 4.71, N 23.37; found: C 43.96, H 4.90, N 23.24.

2-*Chloro-9-(2'-deoxy-β-D*-erythro-*pentofuranosyl)-6-f (2-hydroxyethyl)amino J-9H-purine* (**5b**). As described for **5a**, (2-hydroxyethyl)amine (915 mg, 15 mmol) was reacted with **4** (810 mg, 1.5 mmol) in MeOH (25 ml). Colorless needles (310 mg, 63%) from AcOEt/acetone. M.p. 167–168°. TLC (CH₂Cl₂/MeOH 9:1): R_f 0.15. UV (H₂O): 271 (18700). ¹H-NMR ((D₆)DMSO): 2.30, 2.65 (2*m*, H–C(2')); 3.56 (*m*, H–C(5'), H–CH₂(N)); 3.86 (*q*, H–C(4')); 4.39 (br. *s*, H–C(3')); 4.76 (*t*, *J* = 4.6, CH₂CH₂OH); 4.95 (*t*, *J* = 5.5, HO–C(5')); 5.30 (*d*, *J* = 4.1, OH–C(3')); 6.27 (*t*, *J* = 6.7, H–C(1')); 8.13 (br. *s*, H–N(6)); 8.35 (*s*, H–C(8)). Anal. calc. for C₁₂H₁₆ClN₅O₄ (329.7): C 43.71, H 4.89, N 21.24; found: C 43.59, H 4.80, N 21.09.

6-(Butylamino)-2-chloro-9-(2'-deoxy-β-D-erythro-pentofuranosyl)-9 H-purine (5c). Analogously to 5a, 4 (540 mg, 1 mmol) in MeOH (15 ml) was treated with BuNH₂ (730 mg, 10 mmol) at 37°. Purification on 20 × 20 cm prep. silica-gel plates with CH₂Cl₂/MeOH 9:1 afforded a colorless solid (210 mg, 61%) which crystallized as needles (H₂O). M.p. 159°. TLC (CH₂Cl₂/MeOH 9:1): $R_{\rm f}$ 0.50. UV (H₂O): 271 (18800). ¹H-NMR ((D₆)DMSO): 0.88, 1.31, 1.56, 3.40 (m, aliph. H); 2.27, 2.63 (2m, H–C(2')); 3.56 (m, H–C(5')); 3.86 (br. s, H–C(4')); 4.40 (br. s, H–C(3')); 4.95 (t, J = 5.3, HO–C(5')); 5.30 (d, J = 3.8, HO–C(3')); 6.27 ('t', J = 6.7, H–C(1')); 8.30 (br. s, H–N(6)); 8.34 (s, H–C(8)). Anal. calc. for C₁₄H₂₀ClN₅O₃ (341.8): C 49.20, H 5.90, N 24.49; found: C 49.16, H 5.85, N 24.30.

2-Chloro-6-(cyclohexylamino)-9-(2'-deoxy-β-D-erythro-pentofuranosyl)-9H-purine (5d). Cyclohexylamine (1.0 g, 10 mmol) was added to a stirred soln. of 4 (1.08 g, 2 mmol) in MeOH (30 ml). The stirring was continued for 2 d at r.t. The mixture was treated with MeONa (3 ml, 1_M in MeOH) and the stirring was continued for another day. The mixture was evaporated to an oil and purified by FC on a silica-gel column (2.5 × 25 cm) with CH₃Cl/MeOH 9:1. The nucleoside-containing fractions were evaporated to dryness, and the residue gave colorless crystals (460 mg, 63%) from AcOEt. M.p. 160–162°. TLC (CH₂Cl₂/MeOH 9:1): R_f 0.63. UV (H₂O): 273 (19600). ¹H-NMR ((D₆)DMSO): 1.0–2.0 (*m*, cyclohexyl H); 2.25, 2.60 (2*m*, H–C(2')); 3.55 (*m*, H–C(5')); 3.86 (*q*, H–C(4')); 4.38 (br. s, H–C(3')); 4.97 (*t*, *J* = 5.6, HO–C(3')); 5.32 (*d*, *J* = 4.2, HO–C(5')); 6.26 ('t', *J* = 6.6, H–C(1')); 8.15 (*d*, *J* = 8.4, H–N(6)); 8.34 (s, H–C(8)). Anal. calc. for C₁₆H₂₂ClN₅O₃ (367.8): C 52.24, H 6.03, N 19.04; found: C 52.11, H 5.96, N 18.88.

6-(Benzylamino)-2-chloro-(2'-deoxy-β-D-erythro-pentofuranosyl)-9H-purine (5e). As described for 5d, PhCH₂NH₂ (1.07 g, 10 mmol) was reacted with 4 (920 mg, 1.7 mmol) in MeOH (30 ml). Purification was accomplished on a 3 × 24 cm column using AcOEt (200 ml) and then AcOEt/MeOH 9:1. Colorless crystals (390 mg, 61%) from EtOH/H₂O. M.p. 147°. TLC (CH₂Cl₂/MeOH 9:1): R_f 0.60. UV (H₂O): 273 (21600). ¹H-NMR ((D₆)DMSO): 2.30, 2.60 (2m, H–C(2')); 3.53 (m, H–C(5')); 3.85 (q, H–C(4')); 4.39 (br. s, H–C(3')); 4.64 (d, J = 5.7, CH₂); 4.96 (t, J = 5.9, HO–C(5')); 5.33 (d, J = 4.2, HO–C(3')); 6.27 ('t', J = 6.6, H–C(1')); 7.25–7.32 (H–C(phenyl)); 8.37 (s, H–C(8)); 8.89 (t, J = 4.8, H–N(6)). Anal. calc. for C₁₇H₁₈ClN₅O₃ (375.8): C 54.33, H 4.83, N 18.64; found: C 54.27, H 4.85, N 18.54.

2-Chloro-9-(2'-deoxy- β -D-erythro-pentofuranosyl)-6-methoxy-9H-purine (6). The suspension of 4 (810 mg, 1.5 mmol) in MeOH (30 ml) was treated with MeONa/MeOH (4.5 ml, 1M soln.) and stirred 3 h at r.t. A clear soln.

was formed after 30 min. The mixture was evaporated and the residue chromatographed on a silica gel 60H (column: 3×22 cm) with AcOEt (200 ml) and then AcOEt/MeOH 9:1. The nucleoside-containing fractions were pooled, evaporated, and the residue crystallized. Colorless crystals (290 mg, 64%) from AcOEt. M.p. 141–142°. TLC (CH₂Cl₂/MeOH 9:1): R_f 0.54. UV (H₂O): 258 (12300). ¹H-NMR ((D₆)DMSO): 2.35, 2.70 (2m, H–C(2')); 3.56 (m, H–C(5')); 3.85 (q, H–C(4')); 4.10 (s, MeO); 4.42 (br. s, H–C(3')); 4.94 (t, J = 5.5, HO–C(5')); 5.36 (d, J = 4.3, HO–C(3')); 6.35 ('t', J = 6.6, H–C(1')); 8.60 (s, H–C(8)). Anal. calc. for C₁₁H₁₃ClN₄O (300.7): C 43.94, H 4.36, N 18.63; found: C 44.08, H 4.45, N 18.63.

6-Amino-2-chloro-9-(2'-deoxy-3',5'-di-O-acetyl-β-D-erythro-pentofuranosyl)-9H-purine (7). The stirred suspension of **1a** (850 mg, 3 mmol) in pyridine (10 ml) was treated with Ac₂O (10 ml), and the starting material was dissolved within 30 min. After 3 h, the mixture was evaporated to an oil and then co-evaporated three times with toluene/EtOH. The oily residue was dried (high vacuum) and crystallized from EtOH to yield 7 (1.03 g, 92%). M.p. 173–175°. TLC (CH₂Cl₂/MeOH 95:5): R_f 0.52. UV (MeOH/H₂O): 264 (15300). ¹H-NMR ((D₆)DMSO): 1.82, 2.01 (2s, 2 Ac); 2.55, 3.00 (2m, H–C(2')); 4.25 (m, H–C(4'), H–C(5')); 5.37 (m, H–C(3')); 6.29 ('t', J = 6.5, H–C(1')); 7.85 (s, NH₂); 8.37 (s, H–C(8)). Anal. calc. for C₁₄H₁₆ClN₅O₅ (369.8): C 45.48, H 4.06, N 18.94; found: C 45.61, H 4.12, N 18.90.

6-Amino-8-bromo-2-chloro-9-(2'-deoxy-3',5'-di-O-acetyl-β-D-erythro-pentofuranosyl)-9H-purine (8). A soln. of 7 (400 mg, 1.08 mmol) in dioxane (16 ml) and aq. AcONa (pH 4.7, 0.5M, 4 ml) was stirred, and a soln. of Br₂ (240 mg, 1.5 mmol) in dioxane was added within 15 min. The stirring was continued for another 15 min (TLC control). The mixture was diluted with CHCl₃ (50 ml) and extracted with H₂O (50 ml), sat. NaHCO₃ (50 ml), 1% Na₂S₂O₄ soln. (50 ml), and H₂O (2 × 50 ml). The org. phase was dried (Na₂SO₄) and evaporated to dryness. The residue was crystallized from EtOH to give colorless crystals of 8 (370 mg, 76%). M.p. 163–164°. TLC (CH₂Cl₂/MeOH 95:5): R_f 0.65. UV (MeOH/H₂O 1:1): 269 (17500). ¹H-NMR ((D₆)DMSO): 1.95, 2.09 (2s, 2 Ac); 2.55, 3.45 (2m, H-C(2')); 4.17 (m, H-C(5')); 4.34 (m, H-C(4')); 5.33 (q, H-C(3')); 6.29 ('t', J = 6.8, H-C(1')); 7.96 (s, NH₂). Anal. calc. for C₁₄H₁₅BrClN₅O₅ (448.7): C 37.48, H 3.37, N 15.61; found: C 37.63, H 3.43, N 15.66.

6-Amino-8-bromo-2-chloro-9-(2'-deoxy-β-D-erythro-pentofuranosyl)-9H-purine (= 8-Bromo-2-chloro-2'deoxyadenosine; **9**). To the soln. of **8** (300 mg, 0.67 mmol) in MeOH (10 ml), NH₃/MeOH (10 ml, sat., at 0°) was added. The mixture was stirred overnight at 4°. The light-yellow, chromatographically pure crystals were formed (192 mg, 79%). An anal. sample was crystallized from EtOH. M.p. 190° (dec.). TLC (CH₂Cl₂/MeOH 9:1): R_f 0.57. UV (H₂O): 269 (16300). ¹H-NMR ((D₆)DMSO): 2.20, 3.15 (2m, H-C(2')); 3.45, 3.62 (2m, H-C(5')); 3.82 (q, H-C(4')); 4.45 (br. s, H-C(3')); 4.85 (t, J = 6.2, HO-C(5')); 5.35 (d, J = 4.2, HO-C(3')); 6.23 ('t', J = 7.1, H-C(1')); 7.99 (s, NH₂). Anal. calc. for C₁₀H₁₁BrClN₅O₃ (364.6): C 32.94, H 3.04, N 19.21; found: C 33.12, H 3.11, N 19.22.

REFERENCES

- A. Cohen, R. Hirschhorn, S. D. Horowitz, A. Rubinstein, S. H. Polmar, R. Hong, D. W. Martin, Jr., Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 472.
- [2] M.-C. Huang, K. Hatfield, A. W. Roetker, J. A. Montgomery, R. L. Blakley, Biochem. Pharmacol. 1981, 30, 2663.
- [3] D. A. Carson, D. B. Wasson, J. Kaye, B. Ullman, D. W. Martin, R. K. Robins, J. A. Montgomery, Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 6865.
- [4] R. L. Blakley, M.-C. Huang, R. A. Ashmun, R. Koob, in 'Purine and Pyrimidine Metabolism in Man', Eds. W. L. Nyhan, L. F. Thomson, and R. W. E. Watts, Plenum Publishing Corp., New York, 1983, Vol. 5, pp. 589.
- [5] T.L. Avery, J.E. Rehy, W.C. Lumm, F.C. Harwood, V.M. Santana, R.L. Blakley, *Cancer Res.* 1989, 49, 4972.
- [6] P.G. Parsons, E.P. W. Bowman, R.L. Blakley, Biochem. Pharmacol. 1986, 35, 4025.
- [7] C.J. Carrera, Ch. Terai, M. Lotz, J.G. Curd, L.D. Piro, E. Beutler, D.A. Carson, J. Clin. Invest. 1990, 86, 1480.
- [8] L. D. Piro, C. J. Carrera, D. A. Carson, E. Beutler, New Engl. J. Med. 1990, 322, 1117.
- [9] V. M. Santana, J. Mirro, F. C. Harwood, J. Cherrie, M. Schnell, D. Kalwinsky, R. L. Blakley, J. Clin. Oncol. 1991, 9, 416.
- [10] L.F. Christensen, A.D. Broom, M.J. Robins, A. Bloch, J. Med. Chem. 1972, 15, 735.
- [11] Z. Kazimierczuk, H. B. Cottam, G. R. Revankar, R. K. Robins, J. Am. Chem. Soc. 1984, 106, 6379.
- [12] Z. Kazimierczuk, J. Vilpo, C. Hildebrand, G. E. Wright, J. Med. Chem. 1990, 33, 1683.

- [13] F. Seela, W. Bourgeois, Synthesis 1988, 938.
- [14] Z. Kazimierczuk, R. Mertens, W. Kawczynski, F. Seela, Helv. Chim. Acta 1991, 74, 1742.
- [15] F. Seela, H. Steker, H. Driller, U. Bindig, Liebigs Ann. Chem. 1987, 15.
- [16] E. Breitmaier, W. Voelter, ¹³C-NMR Spectroscopy', in 'Monographs in Modern Chemistry', Ed. F. Kohler, Verlag Chemie, Weinheim, 1978, Vol. 5, pp. 80.
- [17] H. Rosemeyer, G. Toth, B. Golankiewicz, Z. Kazimierczuk, W. Bourgeois, U. Kretschmer, H.-P. Muth, F. Seela, J. Org. Chem. 1990, 55, 5784.
- [18] C. D. Jardetzky, O. Jardetzky, J. Am. Chem. Soc. 1960, 82, 222.
- [19] J. J. Christensen, J. H. Rytting, R. M. Izatt, Biochemistry 1970, 9, 4907.
- [20] H. Rosemeyer, F. Seela, Helv. Chim. Acta 1988, 71, 1573.
- [21] R. Gumbiowski, Thesis, Osnabrück, 1991.
- [22] R. Wolfenden, D.F. Wentworth, G.N. Mitchell, Biochemistry 1977, 16, 5071.
- [23] J. Griffig, R. Koob, R. L. Blakley, Cancer Res. 1989, 49, 6923.
- [24] L. Brox, A. Ng, E. Pollock, A. Blech, Cancer Res. 1984, 44, 934.
- [25] S. Seto, C.J. Carrera, M. Kubota, D.B. Wasson, D.A. Carson, J. Clin. Invest. 1985, 75, 377.
- [26] D. A. Carson, C. J. Carrera, D. B. Wasson, H. Yamanaka, Adv. Enz. Reg. 1988, 27, 397.
- [27] S. Eriksson, B. Kierdaszuk, B. Munch-Petersen, B. Öberg, N. G. Johansson, Biochem. Biophys. Res. Commun. 1991, 176, 586.
- [28] T. A. Krenitsky, J. V. Tuttle, G. W. Koszalka, I. S. Chen, L. M. Beacham III, J. L. Rideout, G. B. Elion, J. Biol. Chem. 1976, 251, 4055.